Remote monitoring has significantly reduced test-fleet downtime and allowed Ford to more than double its battery lab-testing capability.
Ford is conducting rigorous lifecycle tests of new lithium-ion battery systems to evaluate the technology’s ability to recharge under a broad range of environmental conditions.
The advanced battery and fleet vehicle research supports Ford’s global electrification plan, which includes five new electric vehicles in North America by 2012 and Europe by 2013 – the Transit Connect Electric, Focus Electric, two next-generation hybrids and a plug-in hybrid.
Ford Motor Company (NYSE: F) is leveraging the Internet and wireless technology to accelerate testing and refinement of the advanced lithium-ion battery systems that will power its upcoming plug-in hybrid and electric vehicles.
Ford’s rapid progress is enabled by two monitoring methods that allow engineers to collect real-time performance data from batteries in the lab and on vehicles in the field via a secure Internet server, and wirelessly update system software to improve capability and durability. These proprietary methods have significantly reduced test-fleet downtime and allowed Ford to more than double its battery lab-testing capability.
"Remote monitoring allows us to access real-time data and make continuous improvements very quickly," said Sherif Marakby, Ford director, Electrification Program and Engineering. "This degree of efficiency would have been unthinkable a few years ago and will help Ford bring more fuel-efficient, low-emission vehicles to market more quickly than ever before."
Ford will launch two zero-emission all-electric vehicles – the Transit Connect Electric light commercial van in North America in late 2010 and in Europe in 2011, followed by the Focus Electric passenger car in North America in 2011 and Europe in 2012. Two next-generation hybrid electric vehicles and a plug-in hybrid electric vehicle follow in North America in 2012 and Europe in 2013.
Testing the limits
Ford’s future hybrid and electric vehicles will use new lithium-ion battery systems that offer about twice the energy content of the nickel-metal-hydride systems used today, and take up less space inside the vehicle. Although lithium-ion batteries are widely used in the consumer electronics industry, the larger systems to be used in vehicles are designed to manage greater electrical loads under harsher conditions. Only through rigorous testing can the new systems be properly calibrated.
Ford’s battery researchers are focusing on lithium-ion technology’s ability to recharge under a range of conditions including state of charge (from empty to full), battery age (from new to old) and environmental temperatures (from freezing cold to scorching hot).
Understanding how lithium-ion’s material properties perform under a variety of conditions is a critical step toward determining system control algorithms that will allow quick, efficient recharging while minimizing cell deterioration to maximize battery life.
Ford researchers are conducting rigorous lifecycle tests of new lithium-ion battery systems to evaluate the technology’s ability to recharge under a broad range of environmental conditions.
"So far, we’ve been impressed by our system’s exceptionally low internal resistance, which means the battery charges very quickly and efficiently," said Ted Miller, manager, Advanced Energy Storage Technology. "As we continue our testing, we will be able to calculate the system’s optimal recharge rate while maximizing battery life."
Whether testing battery systems in the lab or fleet vehicles on the road, Ford engineers use the remote battery and vehicle test monitoring system to collect real-time data and identify opportunities to implement software updates to manage thermal load and maximize power capability, energy capacity and lifecycle durability.
System-specific engineers are notified via email whenever these software update opportunities occur, based on adaptive event monitoring that can detect conditions of interest and automatically collect relevant data. This method has already led to at least 20 major design improvements for Ford’s future plug-in hybrid and all-electric vehicles.
"The data we’ve collected have helped us understand how lithium-ion battery cells behave under various temperatures and states of charge," said Jas Dhillon, global electric vehicle fleet manager. "And the monitoring system allows us to make software updates to the fleet vehicles while they recharge. What used to be logistically complicated and time consuming can be accomplished now with a click of a mouse."
Ford Motor Company, a global automotive industry leader based in Dearborn, Mich., manufactures or distributes automobiles across six continents. With about 159,000 employees and about 70 plants worldwide, the company’s automotive brands include Ford, Lincoln and Mercury, production of which has been announced by the company to be ending in the fourth quarter of 2010. The company provides financial services through Ford Motor Credit Company.