I was mesmerized by the music, the soaring harmonies of veteran cosmic rockers and new voices, and a dazzling performance powered with little grid energy. The Shoreline Amphitheatre concert stage was powered by an integrated system of SunPower solar photovoltaic in mobile SunPod modules, biodiesel gensets, mobile batteries, and WindTronics wind turbines. The energy-saving GRNLite LED lighting rig for the show has been donated by Bandit Lites, and Schubert Systems has donated the sound rig.
“The disaster in Fukushima is not only a disaster for Japan. It is a global disaster. We come together now across cultural boundaries, political and generational boundaries, to call for changes in the way we use energy, and in the ways we conduct the search for solutions to the problems facing humanity,” says Jackson Browne. “We join with the people of Japan, and people everywhere who believe in a non-nuclear future.”
It was shortly after the March 2011 earthquake and tsunami that triggered multiple meltdowns at the Fukushima Daiichi nuclear plant in Japan that the decision was made by MUSE to coordinate the benefit. We have all read the news about the radiation in Japanese drinking water, food, and children exposed in radiation contaminated schools (New York Times Article). When these great artists meet press members including me before the concert, Bonnie Raitt said, “We all live downwind.”
These musicians are committed to making a difference. Graham Nash uses solar power. As a father of three he told me of his compassion for all of our children. Speaking of nuclear industry executives he asked, “How can they do this. They’ve got their own children.”
“This is another massive world energy disaster from which there will be long-term effects,” adds Jason Mraz. “I am thrilled to be a part of this amazing show that will not only help those in Japan, but that will also call attention to the urgent need to embrace safe, clean energy alternatives.” Jason lives only 20 miles downwind from the aging San Onofre reactors built on an earthquake fault. Jason uses solar power and even had a solar party to educate his neighbors including my 86-year old friend Vera who now uses solar energy.
For over 25 years, Jackson Browne has lived off-grid using solar energy and wind power. He even rides on sunlight, charging his Chevy Volt with his renewable energy.
Major Nations Phase Out Nuclear
Germany makes it the age of renewables and will be ending its use of nuclear power in 10 years. By 2022, the last German nuclear power plant will be closed down. After the disaster in Japan, Germany has already permanently closed 7 nuclear plants. Germany’s world leadership in energy efficiency, wind energy, and solar power, make the end of nuclear by 2022 feasible.
Italy is also no nukes due to a referendum where 90 percent of Italian voters called for the end of nuclear energy. Italy is also showing strong leadership in solar power.
Reuters reports: “Japan, the world’s third-biggest nuclear power user, has only 16 of its 54 reactors on line, supplying less than a third of the total commercial nuclear generating capacity of 48,960 megawatts. The share of nuclear power in Japan’s power supply tumbled to about 18 percent in June from about 30 percent before the disasters struck.” Upgrading buildings and homes in Japan to LED and other energy efficient lighting would eliminate the need for those 16 reactors.
Most problematic in Japan are nuclear plants that are over 30 years old. Such dangers should give us pause in the United States where over 100 plants were built pre-1977 with 40-year target lives. 59 of those plants have had their licenses extended to 60 years. The nuclear industry has campaigned to stretch these to 80-year licenses. In almost all cases, like Japan, the spent rods are stored onsite in U.S. plants. Some U.S. reactors are located near major earthquake faults.
The new generation of reactors are designed to be safer. Unlike wind energy and solar power, nuclear provides electricity 24/7. Contrary to a common perception, nuclear is not as clean as renewable energy. The nuclear industry admits that the lifecycle greenhouse emissions from a nuclear plant are roughly equal to a natural gas plant, due to building with cement, mining, and spent fuel management. Promising innovation is occurring in small nuclear reactors, waste processing and the perpetual dream of fusion. But the industry constantly fails to meet commitments of being safe and cost-effective without government subsidy. Perhaps the greatest obstacle to new nukes in the U.S. is that financing requires taxpayer guarantees, taxpayers to insure the plants, and taxpayers on the line for future disasters.
It is no wonder that many Europeans have insisted on the phase-out of nuclear power after Chernobyl radiation spread to Europe, contaminating food and water. The cancer deaths from radiation exposure haunt people, as do child birth defects.
From my childhood, I remember when the Cuban Missile Crisis brought the United States and Russia to the brink of nuclear war. Students were drilled to duck under our desks in the event on an atomic bomb. Neighbors built bomb shelters. We lived in fear. The threat still exists today as we watch the tension between North and South Korea, between Pakistan and India, and the threat of Nuclear Terrorism. The mideast worries that Iran’s nuclear ambitions go beyond generating electricity. If they do, another defiicit-financed war in the mideast will be the least of our problems.
Coal is the Other Unsafe Fuel
It would be tragic, however, if the phase-out of nuclear power lead to an increase of coal power. More people die each year from coal-power related lung cancer, asthma, and heart attacks, than die from nuclear plant radiation. Coal power plants emit mercury, sulfur dioxide, nitrogen oxides, and carbon dioxide.
Even worse is the methane escape from blowing-up mountain tops to feed our hunger for coal. Basic chemistry informs us that methane and CO2 accumulate in our atmosphere trapping heat. Climate models show that increased heat is threatening our food, our water, and our future. My 87-year old mother has been evacuated twice in recent years from wildfires that followed record draughts.
Although many in the fossil fuel industry now work behind the scenes to shutdown the EPA, or at least reduce their budget to make them ineffective, we actually need the EPA to increase its vigilance in protecting our health and future.
Fortunately, when new power plants are built, coal is rarely cost-effective in comparison to efficient natural gas power plants. In some parts of the world, coal cannot compete with renewable energy such as hydropower and wind power.
Safe Energy Meets All of Our Energy Needs
The good news is that we are moving to an energy future that is brighter and safer. Nations are moving from last century’s model of energy waste and unused capacity to this century’s model of energy efficiency and renewable energy.
In the United States, only about 52 percent of our generation capacity is used on average. We have build an ancient power system designed for all the air conditioners to run on the hottest afternoon in August. Now that smart grid technology including smart meters are being installed by the millions, utilities can deliver the right price signals and charge more when energy demand strains the system, and less energy is plentiful. Using software based intelligent energy management, corporations can run processes at the most cost effective time and we can wash our clothes at times when we can save money.
Energy efficiency (EE) is also lowering our need for coal and nuclear power. LEED buildings use of fraction of the energy of our worst structures. The new LED lights that shine over me as I write to you use 5 times less energy than the incandescent bulbs I formerly used.
The cleanest solutions to global warming, air pollution and energy security are wind farm, water, and solar power (WWS). As Dr. Mark Jacobson walks me through the numbers of his, Dr. Mark Delucchi, and their teams’ multi-year study, the renewable energy solution stands out as the clear winner. Dr. Jacobson is a Professor of Civil and Environmental Engineering at Stanford University and an advisor to the U.S. Department of Energy.
Wind power has been doubling in capacity about every three years. It’s now over 200 GW; in 3 years it will be over 400 GW. 36 U.S. states generate enough wind energy to replace one or more coal or nuclear power plants. U.S. wind farm grew 39 percent in recession year 2009. In a growing number of global locations from Hawaii to Denmark, wind is the least expensive way to generate power. Their WWS study includes both on-shore wind power, which is plentiful from Texas through the Dakotas, and offshore with enormous potential along our Pacific and Atlantic coasts and our Great Lakes.
Solar power includes the photovoltaics that cover homes and the faster growing PV that covers commercial roofs. It also includes the grid-scale PV and concentrating solar power (CSP) that generates the equivalent power of a natural gas or coal plant. The water in WWS includes hydropower, our most widely used source of renewable energy, and geothermal power, which uses steam to drive turbines. Water also includes emerging, wave and tidal power generation. Brilliant minds, breakthrough innovation, and billions of investment in companies that deliver more cost-effective renewables and energy efficiency.
WWS can meet all of our needs for electricity. WWS can also meet all of our need for heat and for transportation. VantagePoint Capital Partners provide venture capital and management guidance to innovative leaders in energy innovation and efficiency, such as BrightSource, Better Place, and Goldwind. VantagePoint was the presenting sponsor of the MUSE Concert.
Safer Energy and Economic Growth
During the next ten years, we will see major nations make their people safer by shutting down their last nuclear power plant. Due to the innovation and progress in energy efficient lights and buildings and thanks to the high growth of renewable energy their nations will better meet all their power needs.
Within the next three decades, all the of our global energy demands can be achieved with zero coal and nuclear power as we replace massive waste with intelligent energy management, replace darkness with energy-efficient lighting, and replace mercury and nuclear poisoning of our children with the power of the sun and the wind.
John Addison, www.cleantechblog.com/